3.805 \(\int (c+a^2 c x^2)^{3/2} \tan ^{-1}(a x)^{3/2} \, dx\)

Optimal. Leaf size=209 \[ \frac{9}{32} c^2 \text{Unintegrable}\left (\frac{1}{\sqrt{a^2 c x^2+c} \sqrt{\tan ^{-1}(a x)}},x\right )+\frac{3}{8} c^2 \text{Unintegrable}\left (\frac{\tan ^{-1}(a x)^{3/2}}{\sqrt{a^2 c x^2+c}},x\right )+\frac{1}{16} c \text{Unintegrable}\left (\frac{\sqrt{a^2 c x^2+c}}{\sqrt{\tan ^{-1}(a x)}},x\right )+\frac{3}{8} c x \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)^{3/2}-\frac{9 c \sqrt{a^2 c x^2+c} \sqrt{\tan ^{-1}(a x)}}{16 a}+\frac{1}{4} x \left (a^2 c x^2+c\right )^{3/2} \tan ^{-1}(a x)^{3/2}-\frac{\left (a^2 c x^2+c\right )^{3/2} \sqrt{\tan ^{-1}(a x)}}{8 a} \]

[Out]

(-9*c*Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]])/(16*a) - ((c + a^2*c*x^2)^(3/2)*Sqrt[ArcTan[a*x]])/(8*a) + (3*c*x
*Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^(3/2))/8 + (x*(c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(3/2))/4 + (9*c^2*Unintegrabl
e[1/(Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]]), x])/32 + (c*Unintegrable[Sqrt[c + a^2*c*x^2]/Sqrt[ArcTan[a*x]], x
])/16 + (3*c^2*Unintegrable[ArcTan[a*x]^(3/2)/Sqrt[c + a^2*c*x^2], x])/8

________________________________________________________________________________________

Rubi [A]  time = 0.178488, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{3/2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[(c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(3/2),x]

[Out]

(-9*c*Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]])/(16*a) - ((c + a^2*c*x^2)^(3/2)*Sqrt[ArcTan[a*x]])/(8*a) + (3*c*x
*Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^(3/2))/8 + (x*(c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(3/2))/4 + (9*c^2*Defer[Int][
1/(Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]]), x])/32 + (c*Defer[Int][Sqrt[c + a^2*c*x^2]/Sqrt[ArcTan[a*x]], x])/1
6 + (3*c^2*Defer[Int][ArcTan[a*x]^(3/2)/Sqrt[c + a^2*c*x^2], x])/8

Rubi steps

\begin{align*} \int \left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{3/2} \, dx &=-\frac{\left (c+a^2 c x^2\right )^{3/2} \sqrt{\tan ^{-1}(a x)}}{8 a}+\frac{1}{4} x \left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{3/2}+\frac{1}{16} c \int \frac{\sqrt{c+a^2 c x^2}}{\sqrt{\tan ^{-1}(a x)}} \, dx+\frac{1}{4} (3 c) \int \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2} \, dx\\ &=-\frac{9 c \sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}}{16 a}-\frac{\left (c+a^2 c x^2\right )^{3/2} \sqrt{\tan ^{-1}(a x)}}{8 a}+\frac{3}{8} c x \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}+\frac{1}{4} x \left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{3/2}+\frac{1}{16} c \int \frac{\sqrt{c+a^2 c x^2}}{\sqrt{\tan ^{-1}(a x)}} \, dx+\frac{1}{32} \left (9 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}} \, dx+\frac{1}{8} \left (3 c^2\right ) \int \frac{\tan ^{-1}(a x)^{3/2}}{\sqrt{c+a^2 c x^2}} \, dx\\ \end{align*}

Mathematica [A]  time = 1.4241, size = 0, normalized size = 0. \[ \int \left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{3/2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(3/2),x]

[Out]

Integrate[(c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(3/2), x]

________________________________________________________________________________________

Maple [A]  time = 0.642, size = 0, normalized size = 0. \begin{align*} \int \left ({a}^{2}c{x}^{2}+c \right ) ^{{\frac{3}{2}}} \left ( \arctan \left ( ax \right ) \right ) ^{{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*c*x^2+c)^(3/2)*arctan(a*x)^(3/2),x)

[Out]

int((a^2*c*x^2+c)^(3/2)*arctan(a*x)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(3/2)*arctan(a*x)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(3/2)*arctan(a*x)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2*c*x**2+c)**(3/2)*atan(a*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}} \arctan \left (a x\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(3/2)*arctan(a*x)^(3/2),x, algorithm="giac")

[Out]

integrate((a^2*c*x^2 + c)^(3/2)*arctan(a*x)^(3/2), x)